Turning Wastewater into Green Hydrogen: Engineering the Future of Clean Energy

Mr. Sharath Chandra Maroju

M.Tech, MIE, MISTE, C.Engg(I), ADBA(UK), LLB, CIArb, MMBM (IIM-B) Executive Director - SYNDIC ENGINEERS | Vice President - HMA | Strategist & Expert Committee Member - FTCCI - ESG & Energy (Power & Renewable Energy) | Founder - Crankit India | Trustee - Vsmile Foundation.

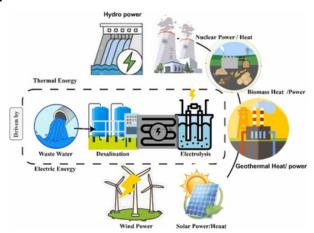
Water, Energy, and the Decarbonization Puzzle

The race toward **net-zero carbon emissions** is pushing nations and industries to look beyond conventional renewables like solar and wind. Enter **green hydrogen** — hailed as the "fuel of the future." It can decarbonize hard-to-abate sectors such as steel, cement, aviation, and shipping while also serving as a versatile energy carrier.

But behind the promise of hydrogen lies a hidden paradox: **water demand**

Producing just 1 kg of hydrogen requires nearly 9 litres of ultrapure water. Scaling up to gigawatt electrolyser parks could strain freshwater resources, particularly in water-stressed regions like India and the Middle East.

This article explores the **engineering pathways, technical calculations, and process integration** of turning wastewater into a reliable feedstock for electrolysers, unlocking a dual sustainability benefit: **wastewater reuse + green hydrogen generation.**


Wastewater as a Feedstock: From Pollutant to Hydrogen Carrier

Why Wastewater?

- Availability: Every city and industry produces it.
- Circular economy: Converts waste into value.
- Decentralization potential: Onsite hydrogen

production at industrial parks, refineries, or solar manufacturing fabs.

However, electrolysers demand **extreme water purity:** conductivity \le 0.1 µS/cm, silica < 0.01 ppm, and TOC \le 50 ppb. This means wastewater must undergo **multi-stage purification.**

Technical Treatment Train for Electrolyser-Grade Water

1.Primary Treatment

• Screens, grit chambers, and oil separators remove coarse solids and floating contaminants.

2.Secondary (Biological) Treatment

- Activated Sludge, MBR (Membrane Bioreactor), or MBBR (Moving Bed Biofilm Reactor) break down dissolved organics.
- Dissolved BOD/COD reduced by 90-95%.

3. Tertiary Polishing

- Ultrafiltration (UF) or sand filters.
- UV disinfection or ozonation..

4.Advanced Purification

- Reverse Osmosis (RO): Removes salts, hardness, and most dissolved organics.
- Electrodeionization (EDI): Continuous ion removal without chemicals.
- UV Oxidation & Degassing: TOC destruction and dissolved gas removal.

At this stage, the water matches **semiconductor fab-grade DI water** — the exact requirement for PEM and alkaline electrolysers.

Electrolysis: Splitting Molecules, Not Atoms

The Science in Numbers

The core reaction:

$$2H_2O(l) \xrightarrow{ ext{Electricity}} 2H_2(g) + O_2(g)$$

Reversible cell voltage (thermodynamic minimum):

$$E_{rev} = \frac{\Delta G}{nF} \approx 1.23 \ V \ (25^{\circ}C)$$

Practical voltage (due to overpotentials): 1.8-2.2 V Hydrogen production rate (moles/s):

$$\dot{n}_{H_2}=rac{I}{2F}$$

Where:

- III = Current (A)
- FFF = Faraday constant (96485 C/mol)

Example: For a 10,000 A cell at 2 V:

$$\dot{n}_{H_2} = rac{10,000}{2 imes 96485} = 0.0518 \ mol/s \ = 0.104 \ g/s pprox 375 \ g/h$$

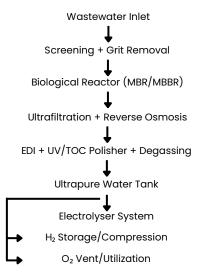
Scaling up with stacks \rightarrow multi-megawatt hydrogen output.

Electrolyser Technologies

1.Alkaline Electrolyser (AEL):

- · Mature, cost-effective, tolerant to impurities.
- Uses KOH/NaOH electrolyte.
- Efficiency: 60-65%.

2.Proton Exchange Membrane (PEM):


- Requires ultrapure water.
- High purity hydrogen (>99.99%).
- Fast response, suited for renewable integration.
- Efficiency: 65-75%.

3. Solid Oxide Electrolyser (SOEC):

- High-temp (700-900 °C).
- Can achieve >80% efficiency.
- Still in pilot phase.

For **wastewater-fed systems**, **PEM** (with rigorous polishing) or **Alkaline** (for robust operation) are most feasible.

P&ID Conceptual Layout

Energy & Mass Balance

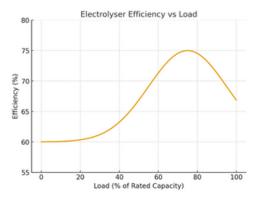
Water Requirement

1 kg H₂ → 9 L ultrapure water + ~50 kWh electricity

Wastewater Utilization Example

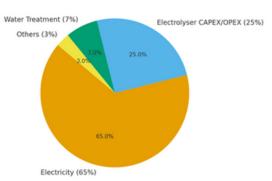
- 1 MLD wastewater (1,000,000 L/day)
 - Assume 80% recovery after treatment → 800,000 L/day
 - Hydrogen potential:

$$\frac{800,000}{9}\approx 88,800~kgH/day$$


· Equivalent energy:

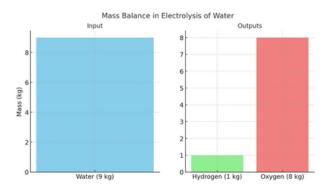
 $88,800 \times 33.3 \ kWh/kg \approx 2,956 \ MWh/day$

This equals powering ~120,000 Indian homes daily.


Performance Characteristics

- Efficiency vs Load Curve:
 - Peak efficiency (70-75%) at ~70-80% rated load.
 - Efficiency dips at both low (<30%) and full (100%) load.

- Hydrogen Cost Breakdown (conceptual pie chart idea):
 - Electricity: 65-70%
 - Water treatment: 5-8%
 - Electrolyser CAPEX/OPEX: 20–25%


Cost Breakdown of Green Hydrogen Production

Beyond Hydrogen: The Bonus Oxygen

For every 1 kg of hydrogen produced, 8 kg of oxygen is released. Instead of venting, oxygen can be reused in:

- Wastewater plant aeration (reduces blower energy).
- Steel and glass industries.
- Medical/healthcare oxygen supply.

Sustainability Benefits

- ✓ Reduces freshwater demand in hydrogen plants
- Converts wastewater from liability to asset
- Enables distributed hydrogen hubs in cities and industrial clusters
- ✓Promotes zero-liquid discharge (ZLD) and circular economy models

Looking Ahead

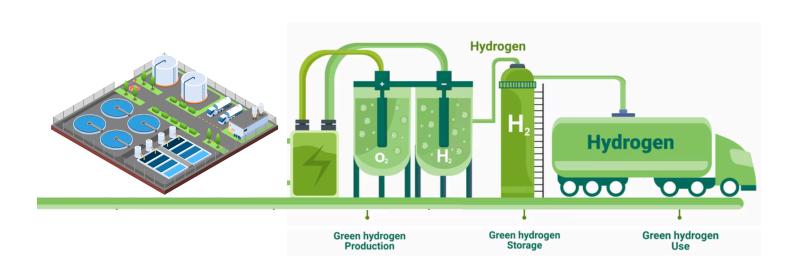
In the coming decade, expect to see:

- Al-driven quality monitoring for wastewater-fed electrolysers.
- Hybrid solar + wind + wastewater hydrogen hubs.
- Integration with green ammonia, methanol, and fuel-cell ecosystems.
- Municipalities turning sewage into hydrogen fueling stations.

Conclusion

Green hydrogen is not just about splitting water — it's about **engineering smarter water-energy loops.** By treating wastewater into an electrolyser-ready feed, we unlock a sustainable pathway that addresses both **water scarcity** and **energy decarbonization.**

As cities, industries, and nations embrace this model, wastewater will no longer be a burden. Instead, it will power our fuel cells, ships, planes, and industries — turning yesterday's effluent into tomorrow's clean energy.


I strongly believe wastewater-fed electrolysers are not just a concept but the **next industrial revolution in energy and environment management.** The world must see wastewater not as a burden but as a fuel for the future.

"In every drop of treated wastewater, I see the spark of tomorrow's clean hydrogen economy."

— Sharath Chandra Maroju

www.linkedin.com/sharath-chandra-maroju

